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MODERN DESIGN OF SIMULATION EXPERIMENTS
by

pdward J. Dudewicz

Department of Statistics
The Ohio State University
Columbus, Ohio 43210

INTRCDUCTION

A "simulation™ is an experiment run inside the compu-
ter (instead of in what is generally, in the field, termed
the "real world") in order to obtain information about a
system (existing or proposed), modifications to a system,
or several competing systems. Since it is well-known that
much more information can be extracted from experiments
which are carefully designed statistically than can be
from experiments which are not statistically designed,
statistics has a large role to play in simulation. This
chapter deals with that role. This is an cspecially
important chapter for those not used to thinking of their
simulations in statistical terms (e.g., those who "run
until the money runs out™ or who believe that "“one run

will show me how the system behaves"), as it will enable

&
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them to obtain valid results where invalid ones wer‘é' QL} %
previously obtained, to obtain those results at lower cost

than for valid results obtained without a carefully

designed experiment, and to obtain valid results for

systems where (without using statistical design) the study

is computetionally infeasible.

As we have said, since simulation data are essenti-
ally obtained from an experiment run "inside the computer,”
we need to know how to design the experiment whereby these
data are generated, and we need to know how to analvze the
resulting data. Now this comprises a large part of the
field commonly termed statistics, to which whole university
departmertrs are devoted. Hence, only the most important
aspects of design and analysis will be covered here, with
a cavaet that, if a simulation study is to be properly
designed and executed, in many cases it will be desirable
to have associated with the study from the cutset a
statistician competent in simulation applications.

It is a fact that statistics grew up in a largely
agricultural setting where such assumptions as homoscedas-
ticity (equality of variances of observations taken from
diverse sources, such as weights of tomotoes from differ-
ent types of tomato plants) commonly held true, while in
simulation these are often violated (e.g., serious hetrero-

scadasticity -- greatly unequal variances -- is more often
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the rule in simulation studies, as when a number of
diverse alternative job -shop scheduling rules are being
simulated). The theory required to handle these new

gituations has only recently been developed (e.g., for

heternscedasticity {11 and for autocorrelated obsevvations
£2}). Thus, many parts of the topics covered here will,
for some time to come, be unavailable in almost any texts

or books and manuals on statistical methods.

1. Design

l.a. Factorial, fractionasl-factorial, and one-at-a-

1ime experiments: why and why/not, efficiency.

The pitfalls of lack ¢f statistical design in a
simulation experiment include: invalid inferences; vailid
inferences at substantially increased costs; and inabili-
ty to complete the study.

For example, suppose a simulation model has been
built of output Y(xl, xz) of a system which depends on two
input variables X, (temperature in °F.) and x, (reaction
time in minutes) [each reader will know similaf examples
in his/her own field, and may find it helpful to re-cast

this example in the terms applicable to one such examplel.

Suppose that it is standard to operate at X, = 300,

X, = 10, and the simulation is to evaluate possible gains
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of increasing Xy (by 25°F.) or X, {by 2 minutes).
Commonly one would run the model at (xl, xg) ejual to
(300, 10), (325, 10), (300, 12) to evaluate the effect

of the proposed changes (one-at-a-time method). Suppose

one does so, and the results (each based on one run) are

as in Table 1. Let us suppose that no variability is

Table 1. Results of one-at-a-time experiment.
(xl, XZ) Y(xl, x2) from simulation run
(300,10) 100.0
(325, 10) 102.5
(300, 12) 101.0

present (so, untypically, results of one simulation run
are typical), that past experience with the system has
typically yielded 100.0 output units at (xl, XQ) (300,

10), that expensive plant changes are required to imple-

ment changes of this magnitude (so we must simulate before

making changes in the plant), and that to be economically

feagsible we must obtain at least a 5% process yield in-
crease from any recommended changes. We estimate the
gain from incrementing xi to be

102.5 - 100.0 = 2.5
and the gain from incrementing X, to be

s

101.6 - 100.0 = 1.0
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for a total estimated gain of 2.5 + 1.0 = 3.5 units, less
than 5%, so the proposed improvement in process is dis-
carded.

Now the above assumes an output linear in each of Xy
and X, (perhaps reasonable in a small range about the
usual process operating conditions), but with no synergis-
tic effects (no interaction)... which is often false in
the real-world (at least, we should not believe such an
assertion without validation, and the design above allows
no such verification). For example, an experiment run at

(325, 12) might complete our data set to that of Table 2.

This set of data has a far different interpretation than

Table 2. Results of 22 expe?iment.

(xl, X,) Y(x;, %,) from simulation run
(300, 10) 100.0

(325, 10) 102.5

(300, 12) 101.90

(325, 12) 110.0 N

does that of Table 1; we now see it will be very profi-
table {(double the needed 5% gain in output) to make the
plant modifications needed to run at the higher temperature

(x1 = 325°F) and longer time (x, = 12 min.), thus avoiding

an invalid inference. Theresults of Table 2 would be




better displayed as in Table 3, which shows the 2?2 {two
factors, each at two levels) design more clearly. Such

results as “hese can be obtained from as simple an under-

Table 4. Results of 22 experiment.

Y(xl, xp from simulation run

Xy

lying true function as
Y(x, ,%X,) = 100.0+40.1(x%,~-300.0)40.5(x,=-10.0)
172 i 2

+0.2(x1-300.0)(x2—10.0).

As the number n of variables increases, the (invalid)
one-at-a-time method will require a number of simulation
runs equal to the number of variables; e.g. if in
addition to x4 (temperature) and X, (reaction time) we
alse have variables X4 (arid concentration) and x, {pH)
present, then n = 4 simulavtion runs would be needed by
this (invalid) method. In order to assess effects with
each variable at the traditional or a higher level, the
analog c¢f the experiment in Table 2 would require 2" - 16
simulation runs. As these rumns can be very expensive
(e.g., in nuclear simulations, where a run can consume

several hours of computer time), we now wish to




investigate more sophisticated designs which yield

comparably correct inferences at substantially reduced

cOost.

Te pertorm this task, we must first consider medels

for yield Y as a function of variables X1s Xps Xga Rya vens

It is reasonable to assume that true mean yield E(Y) may
be accurately represented by a polynomial equation of
sufficiently high order:

EY(xl, Xos X35 X PR |

T oBg t OByxy ot Boxg b Baxy t o Byuxy

OBpaXgXy f ByaXyXg v By X Xt R en # R xux,
. z 2 2 2
Bra%1 T BapXp * Byaxg v By

toByogXyXoXa By Xyxoxy ¥ ByagXyXax, * BoauXoxaX,
81234x1x2x3xu + ... .
Different choices of the points (xl, Ros X35 Xy o) at

which simulation runs should be made (each such choice is

called an experimental design) allow us to estimate var-
g1

ious of the B's (singly or in combination), while assuming
others are negligible {(which can often be tested).
Tvpically one assumes terms of higher than second order
are negligible (0 = By,4 = By, = Bygy = Bygy = Bypgy °
+e.). The coefficients 81, 82, 83, Bk are called main
effects of variables X1s Xps X3, Xy while 812, 813, Elu’

823. BQM, 63q are called 2-factor interactions (2 f.i.)

P~




of the variables involved in the subscripts. An experi-

v

-4 mental design is called a Resolution II1 design if no .

main effect is confounded with (not able to be estimated

separdately trom) any other main effect, but main

with each

and 2 f.1i.

effects are confounded with 2 f.i.

other. In a Resoluticn IV design no main effect is con-

founded with any other main effect o~ 2 f.i., but 2 f.i.'s

Thus, Resolution III will

are confounded with each other.

allow us to fit a model B, + 3 B;x; in factors x;, but

interaction will bias the fit. A resolution IV design

-~

will allow a fit unbiased by 2 f.i., i.e. Bi

will estimate

. 1

B {not B; * some of the Blj s of x.x. interactions).

17

The one-at-a-time method vields a resclution IV design,

and its disadvantages have been noted above.

1.b. Screening experiments.

In screening experiments one attempts to use designs

{at relatively modest cost,

which allow one to find out

i.e. no. of simulation runs) which of the variables X1

X5 X35 Xy ... are most influential as to one's system's

cutput in very few exporiments by using a Resolution III

design (of course one then gives up almost all model

fitting ability , the intention being to run a more exten-

sive experiment later on the few highly influential
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variables identified). For example, one design commonly
used is the Resolution II1 Plackett-Burman design which
can study 7 variables Xis K5y X3y Xyy Kgs Kgs Xg in B

simulation runs, shown in Table %, 1In this design,

Table &. Resolution III Plackett-Burman design.
Variable
¥1 X X3 Xy Xg Fg Xy
i + + { - + - -
2 - + + + - + -
Experiment 3 - - + + + - +
Yy + - - + + + -
5 - + - - + + +
[3) + - + - - + +
7 + + - + - - +
8 - - - - - - -

éach experimental variable has 2 levels, low{-) and high(+)
(e.g., 200(=) and 325(+) for xl). In experiment 1, varia-
bies I, 7, 3, 5 are set toc their high levels, while varia-
bles 4, &€, 7 are set tu their low levels. If desired
later, this design can be augmented to a Resolution IV

design by adding 8 more runs (for a total of 16 runs). One

can aliso study € factors in a 12 euxperiment (Webb) experi-

mental design, at Resolut:-on IV. As another example of a

screening design, if we have 5 independent variables then

a Webb design of Resolution IV is available (see Table 5}




which involves 10 experiments,

Table 5. b-variable screening design.

Variable

X~
)

Experiment

Note that the first 5 experiments form a Resolution III
design, but the 1l0-run experiment is much more efficient

than the 5-run experiment (it yields estimates with

variance 0?/9 for main effects, Vs, o? for the 5-run one=-

at-a-time experiment... a 9-fold reduction at a price of

5 more runs, and with 2 f.i. elimination; here o? is the
variability inherent in each simulation run's outcome).

As a final example of a screening design, with 4 variables

X1s ¥ps X3s X, a Webb Resolution IV design with 8§
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experiments is available (Table 6) (which is a

1
"fractional factorial" design, i.e. a fraction of the ;
2u = 16 experiment factorial design with confounding
scheme I = ABCD) which allows one to fit 60, Bl’ 82, 83,
By unbiased by two-factor interactions (though those inter-
actions themselves are not estimable).
Table b, b-variable screening design.
Vafiable
xy X5 X4 X,
1 - - - -
P, + - - +
3 - + - +
I + + - -
F]
Experiment 5 - - + +
6 + - + -
7 - + + -
8 + + + +

l.c. Central composite designs and full guadratic

models.

Assuming screening has been completed we will wish

to use a design which allows for assessment of all main

effects, all 2 f.i., and (perhaps) all gquadratic effects.
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We will illustrate with a 4 variable example.

Here one wishes not simply to find the most important
factors, but rather to model sysfem output as a function
of design settings. Of course the appropriate design to
use depends on one's goals and scope of study, as well as

on one's budget. One possibility is an 11 experiment Webb

design (Table 7). This design allows one to fit 60, 61,

Bos Bgsy By 812, 613, Blu’ Bogs Boys BBH assuming no

curvature.
Table 7. Y-variable Webb design.®
Variable
X4 X, X3 x,
1 0 0 0 M)
2 0 0 1 1
3 0 1 0 i
4 0 1l 1 0
8 1 0 0 1
Experiment B 1 0 1 0
7 1l 1 0 0
3 0 1 1 1
9 1 0 1 1
10 1 1 0 1
! 11 1 1 1 0
% "g" denotes low (-), "1" denotes high (+).
— e ———— ————— - e

ol
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Since curvature cannot often be ruled out a priori,
one will usually desire another design (which, however,
will require more experiments) unless one's budget is

severely constrained. The full factorial 2! design (16

experiments) allows one to estimate Bg * 611 + 822 + 333 +
Buus Bro Bas Bgs Bus Bigs Bygs Byus Bogs Bays Baus Brogs Browo
Bi3y» Bogzy and (assuming 8123u negligible) have an estimate
of experimental error o?. [No suitable "fractions" of this
design exist, as they all confound one~ and/or two-factor
effects, so no such easy reduction of number of experiments

needed is possible in the 4-factor case.] By adding one

experiment, one obtains the 241 design (17 points), with

which one can now separately estimate BO’ 311 + 322 +333 +
By, » hence (barring cancelling magnitudes) assess the total
quadratic effect independently of the response at the
center (BO).

While the above designs are in common use, more

recently the Central Composite Design (CCD) hac baen used

to good advantage in such situations. This requires 8 star
{or axial) points be added to the 2%+1 design, for a total
of 25 experiments, and allows a full quadratic model to be
fitted. Suitable fractions of the 2 may be used (i.e. a
fraction with at most one 2-factor interaction in any alias
set), and (via confounding scheme 1 = ABC) one can obtain

the full quadratic model estimation with
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524 + 1 + 8 = 17 points.

As an example, suppose we have six variables to consider

say Xq, X Xge Xys Koo R A full-factorial approach

. & . . .
would require 2° = G4 experiments, which 1n many cases

would not be feasible., However, a CCD can be implemented
with only 262 4 (2)(6) + 1 = 29 experiments as shown in

Table 8. There the levels are "coded" so that "1" means




Table 8. CCD studying 6 variables, in 29 experiments.

E ée Variable
Name Expt. No. Xy X, Xq Xy, Xg Xg
1 1 -1 -1 1 -1 -1
2 -1 1 -1 1 -1 -1
3 -1 -1 1 1 -1 -1
" 1 1 1 1 -1 -1
5 1 -1 -1 -1 1 -1
62 6 -1 1 -1 -1 1 -1
2 7 -1 -1 1 -1 1 -1
Points 8 1 1 1 -1 1 -1
9 1 -1 -1 -1 -1 1
15 -1 1 -1 -1 -1 1
11 -1 -1 1 -1 -1 1
12 1 1 1 -1 -1 1
13 1 -1 -1 1 1 1
1y -1 1 -1 1 1 1
15 1 -1 1 1 1 1
16 1 1 1 1 1 1
17 - 0 0 0 0 0
) 18 a 0 0 0 0 0
: 19 1] - 0 0 0 0
20 0 Qa 0 0 0 V]
21 0 0 -a a 0 ¢
i Star 22 0 G -Q 0 0 0
' 23 0 a 0 -0 0 G
24 o o0 0 « 0 0 4
25 Q 0 0 0 -a 0
26 0 ¢ 8] 0 a G
27 0 0 0 0 0 ~Q
28 0 0 0 0 0 a
. Center 29 0 0 0 0 0 0
2% ; . :
K 7 the "high" level of the variable, "-1" means the "low"
. . level of the variable, and "0" means the average of the
high and low levels. "-a" and "o" represent multiples of

the "low" and "high" levels; e.g., if one takes a = 1

(face-centered star points) these are equal to the




respective "low" and "high" levels of the variable in

question. Some typical possibilities are given in Table

Y.
Table 1. Coding of variable Xy levels, CCD.
Level
- 1 0 1 a
o = 1 300 300 312.5 325 325
a = 2 287.5 300 312.5 325 337.5

If one has bounds Li and U, on variable X5 and wishes to
explore the full space, o« = 1 is often reccmmended. In
other settings 1 < a < 2 is often used. The specifics
vary from setting to setting, with o = 1.5 being a
reasonable c¢ompromise for experimenters who do not have

access to a statistical decipgn expert.

1.4. Efficient implementation.

It is important to note that the ordering of experi-
ments in the above tables is not the recommended order in
which the simulation runs should be made. Since often the
"next" run starts with the end of the "last" run's random

number stream, runs should be in random order to prevent

systematic effects (from possible deviations from random-

ness of one's random
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number generator) from systematically biasing the

* S results. A carefully tested and chosen random number

generator is essential, and an existing generator should

net be used without extensive validation (available in

{3,

Note that {(unless one has prior knowledge of how his

s i e atia

18

system will use random numbers and correlation, which

rare) use of variance reduction techniques (see Chapter D)

will not often be appropriate.

l.e. Two-stage and sequential designs.

The designs explored so far are reaconable ones to

use in homoscedastic systems, In heteroscedastic systems

L3 -
(where 0? is a function of the levels of Xy Xgs ee),

ol

other designs are called for. Most commonly one finds

' that if Xy5 X5, ... represent levels of a continuous

et ke

variable (such as temperature), then the designs given

A o thus far are appropriate even if o’ varies slightly as !
A ;
: Xys Xos oo arve changed. :
N~ However if Xys X5, ... represent the presence (1) or

absence (0) of an attribute, then new designs for select-

ing the best combination of attributes re: system

See [u] for some details.

performance are called for.
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2. Analysis.

The designs presented in section 1 are appropriate
for situations where one wants to know "which of k factors
are most important in determining my system's output?" or
“"What model for system output, in k input factors, should
be subjected to optimization (Chaoter F)?" Design and
analysis of the simulation experiment when one's geal is
noct to answer the above questions, but rather others, such

as: a. What is the long-run mean of my system? (which

may be answered using & transformation-based analysis,
and involves questions of normality and run-in time, and
leads us to two-stage and regenerative approaches);

b. Which system parameters have significant effects?

{which leads us into analysis of variance (ANOVA), and 2
where transformations should generally not be used);

c. How different are the various systems' performances?

{(which requires simultaneous interval estimates); and

d. Which is the best system (or set of System parameters)?

(which requires the new methodology of ranking-and-
selection procedures), is a subject now undergoing rapid
development. While such problems have traditionally been
approached in the past with transformations, one- stage

procedures, or ANOVA, the pitfalls of some of these

traditions and of equal-sample-sizes, and the new methods
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recently developed which should be used in the future,
are explored in [1].

Towards the future, ongoing developments in multi-

variate analogs of the design and analysis procedures

presented should lead to future procedures which are able

to simultaneously censider several output characteristics.
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